The forkhead transcription factor Foxo1 bridges the JNK pathway and the transcription factor PDX-1 through its intracellular translocation.

نویسندگان

  • Dan Kawamori
  • Hideaki Kaneto
  • Yoshihisa Nakatani
  • Taka-Aki Matsuoka
  • Munehide Matsuhisa
  • Masatsugu Hori
  • Yoshimitsu Yamasaki
چکیده

It has been shown that oxidative stress and activation of the c-Jun N-terminal kinase (JNK) pathway induce the nucleocytoplasmic translocation of the pancreatic transcription factor PDX-1, which leads to pancreatic beta-cell dysfunction. In this study, we have shown that the forkhead transcription factor Foxo1/FKHR plays a role as a mediator between the JNK pathway and PDX-1. Under oxidative stress conditions, Foxo1 changed its intracellular localization from the cytoplasm to the nucleus in the pancreatic beta-cell line HIT-T15. The overexpression of JNK also induced the nuclear localization of Foxo1, but in contrast, suppression of JNK reduced the oxidative stress-induced nuclear localization of Foxo1, suggesting the involvement of the JNK pathway in Foxo1 translocation. In addition, oxidative stress or activation of the JNK pathway decreased the activity of Akt in HIT cells, leading to the decreased phosphorylation of Foxo1 following nuclear localization. Furthermore, adenovirus-mediated Foxo1 overexpression reduced the nuclear expression of PDX-1, whereas repression of Foxo1 by Foxo1-specific small interfering RNA retained the nuclear expression of PDX-1 under oxidative stress conditions. Taken together, Foxo1 is involved in the nucleocytoplasmic translocation of PDX-1 by oxidative stress and the JNK pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oxidative Stress Induces Mouse Follicular Granulosa Cells Apoptosis via JNK/FoxO1 Pathway

The c-Jun N-terminal protein kinase (JNK) plays an important role in the regulation of cell apoptosis. Forkhead box O (FoxO) transcription factors are involved in diverse biological processes, including cellular metabolism, cell apoptosis, and cell cycle. However, the JNK/FoxO1 pathway involved in the process of apoptosis induced by oxidative stress remains to be elucidated. Here, we demonstrat...

متن کامل

Anti-diabetic effect of loganin by inhibiting FOXO1 nuclear translocation via PI3K/Akt signaling pathway in INS-1 cell

Objective(s): JiangTangXiaoKe (JTXK) granule, a Chinese traditional herbal formula, has been clinically used and demonstrated to be beneficial in controlling high glucose and to relieve the symptoms of  Type 2 diabetes mellitus patients for decades. In this study, we explored how loganin, one of the components in JTXK granule, mediated the anti-diabetic effect.Materials and Methods: We generate...

متن کامل

Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun NH(2)-terminal kinase.

Oxidative stress is induced in pancreatic beta-cells under diabetic conditions and causes beta-cell dysfunction. Antioxidant treatment of diabetic animals leads to recovery of insulin biosynthesis and increases the expression of its controlling transcription factor, pancreatic duodenal homeobox-1 (PDX-1), in pancreatic beta-cells. Here, we show that PDX-1 is translocated from the nuclei to the ...

متن کامل

JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16.

DAF-16/forkhead transcription factor, the downstream target of the insulin-like signaling in Caenorhabditis elegans, is indispensable for both lifespan regulation and stress resistance. Here, we demonstrate that c-Jun N-terminal kinase (JNK) is a positive regulator of DAF-16 in both processes. Our genetic analysis suggests that the JNK pathway acts in parallel with the insulin-like signaling pa...

متن کامل

Impaired medulloblastoma cell survival following activation of the FOXO1 transcription factor.

Medulloblastoma is the most frequent type of childhood brain tumour. The insulin-like growth factor I receptor (IGF-IR) plays a significant neuroprotective role in medulloblastoma survival through regulation of the downstream effectors of the phosphoinositide-3-kinase-protein kinase-B (PI3K-PKB/c-Akt) pathway. One such target is Forkhead box O1 (FOXO1; FKHR), which is part of the FOXO family of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 2  شماره 

صفحات  -

تاریخ انتشار 2006